Minggu, 28 Juni 2009

KULTUR JARINGAN TANAMAN


MASALAH-MASALAH DALAM KULTUR JARINGAN

Dalam kegiatan kultur jaringan, tidak sedikit masalah-masalah yang muncul sebagai pengganggu dan bahkan menjadi penyebab tidak tercapainya tujuan kegiatan kultur yang dilakukan. Gangguan kultur secara umum dapat muncul dari bahan yang ditanam, dari lingkungan kultur, maupun dari manusianya.

Permasalahan dalam kultur ada yang dapat diprediksi sebelumnya dan ada pula yang sulit diprediksi kejadiannya. Untuk yang tidak dapat diprediksi, car mengatasinya tidak dapat secara preventif tetapi diselesaikan setelah kasus itu muncul.

ADAPUN MASALAH-MASALAH YANG TERJADI DALAM KULTUR JARINGAN YAITU:

1) Kontaminasi

Kontaminasi adalah gangguan yang sangat umum terjadi dalam kegiatan kultur jaringan. Munculnya gangguan ini bila dipahami secara mendasar adalah merupakan sesuatu yang sangat wajar sebagai konsekuensi penggunaan yang diperkaya.

Penomena kontaminasi sangat beragam, keragaman tersebut dapat dilihat dari jenis kontaminasinya (bakteri, jamur, virus, dll).

2) Pencoklatan/browning

Pencoklatan adalah suatu karakter munculnya warna coklat atau hitam yang sering membuat tidak terjadinya pertumbuhan dan perkembangan eksplan. Peristiwa pencoklatan sesunggguhnya merupakan peristiwa alamiah yang biasa yang sering terjadi.

Pencoklatan umumnya merupakan suatu tanda-tanda kemunduran fisiologi eksplan dan tidak jarang berakhir pada kematian eksplan.

3) Vitrifikasi

Vitrifikasi adalah suatu istilah problem pada kultur yang ditandai dengan:

ü Munculnya pertumbuhan dan pertumbuhan yang tidaknormal.

ü Tanaman yang dihasikan pendek-pendek atau kerdil.

ü Pertrumbuhan batang cenderung ke arah penambahan diameter

ü Tanaman utuhnya menjadi sangat turgescent.

ü Pada daunnya tidak memiliki jaringan pallisade.

4) Variabilitas Genetik

Bila kultur jaringan digunakan untuk upaya perbanyakan tanaman yang seragam dalam jumlah yang banyak, dan bukan sebagai upayapemuliaan tanaman maka variasi genetik adalah kendala. Variasi genetik dapat terjadi pada kultur in vitro karena:

o Laju multiflikasi yang tinggi, variasi terjadi karena terjadinya sub kultur berulang yang tidak terkontrol

o Penggunaan teknik yang tidak sesuai.

Variasi genetik yang paling umum terjadi pada kultur kalus dan kultur suspensi sel, hal tersebut terjadi karena munculnya sifat instabilitas kromosom mungkin akibat teknis kultur, media atau hormon.

Cara mengatasi problem variasi genetik tentunya tidak sederhana, harus memperhatikan aspek yang dikulturkan.

5) Pertumbuhan dan Perkembangan

Problem utama berkaitan dengan proses pertumbuhan adalah bila eksplan yang ditanam mengalami stagnasi, dari mulai tanam hingga kurun waktu tertentu tidak mati tetapi tidak tumbuh.

Untuk menghindari hal itu dapat dilakukan dengan preventif menghindari bahan tanam yang tidak juvenil atau tidak meristematik. Karena awal pertumbuhan eksplan akan dimulai dari sel-sel yang muda yang aktif membelah, atau dari sel-sel tua yang muda kembali.

Media juag dapat menjadi sebab terjadinya stagnasi pertumbuhan, karena dari kondisi medialah suatu sel dapat atau tidak terdorong melakukan proses pembelahan dan pembesaran dirinya.

Pada proses klutur jaringan yang bersifa inderict embriogenesis, tahapan pembentukan kalus harus dilanjutkan dengan mendorong induksi embriosomatik dari sel-sel kalus. Terjadinya embrio somatik dapat secara endogen atau eksogen.

6) Praperlakuan

Masalah pada kegiatan in vitro bukan hanya dari penanaman eksplan saja, pertumbuahn dan perkembangannya dlama botol saja tetapi juga sangat bisa dipengaruhi oleh persyaratan kegiatan prapelakuan. Pada kasus ini masalah akan muncul bila kegiatan prapelakuaan tidak dilakukan.

Prapelakuan dilakukan umumnya untuk tujuan-tujuan tertentu, secara umum adalah dalam rangka menghilangkan hambatan. Hambatan apat berupa hambatan kemikalis, fisik, biologis. Hambatan berupa bahan kimia penanganannya harus dimulai dari pengenalan senyawa aktif, potensi gangguan, proses reaksi dan alternatif pengelolaannya.

7) Lingkungan Mikro

Masalah lingkungan inkubator juga tidak bisa diabaiakan karena ini juga sering menjadi masalah. Suhu ruangan inkubator sangat menentukan optimasi pertumbuhan eksplan, suhu yang terlalu rendah aatau tinggi dapat mempengaruhi pertumbuhan dan perkembangan pada eksplan.

Kebutuhan antara satu tananaman dengan tanaman yang lain berbeda, namunddemikian solusinya sulit dilakukan mengingat umumnya ruangan inkubator suatu ruangan laboratorium kultur jaringan tidak bisa dibuat variasi antara satu ruangan dengan bagian ruangan yang lainnya.

Sehingga optimasi pertumbuhan tidak bisa diharapkan sama antara kultur yang satu dengan kultur yang lain.

Diposkan oleh Borneo_culture di 05:18 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: MASALAH

ZAT PENGATUR TUMBUH

AUXIN

Auxin adalah salah satu hormon tumbuh yang tidak terlepas dari proses pertumbuhan dan perkembangan (growth and development) suatu tanaman.
Hasil penemuan Kogl dan Konstermans (1934) dan Thymann (1935) mengemukakan bahwa Indole Acetic Acid (IAA) adalah suatu auxin.

KEJADIAN DI DALAM ALAM

Di dalam alam, stimulasi auxin pada pertumbuhan celeoptile ataupun pucuk suatu tanaman, merupakan suatu hal yang dapat dibuktikan. Praktek yang mudah dalam pembuktian kebenaran diatas dapat dilakukan dengan Bioassay method yaitu dengan the straight growth tets dan curvature test.

Menurut Larsen (1944), Indoleacetaldehyde diidentifikasikan sebagai bahan auxin yang aktif dalam tanaman, selanjutnya ia mengemukakan bahwa zat kimia tersebut aktif dalam menstimulasi pertumbuhan kemudian berubah menjadi IAA. Perubahan tersebut menurut Gordon (1956) adalah perubahan dari Trypthopan menjadi IAA
Tryptamine sebagai salah satu zat organik, merupakan salah satu zat yang terbentuk dalam biosintesis IAA. Dalam hal ini perlu dikemukakan dalam tanaman fanili Cruciferae dan merupakan zat yang dapat dikelompokan ke dalam auxin (Jones et al, 1952).

Menurut Thimann dan Mahadevan (1958), zat tersebut atas bantuan enzym nitrilase dapat membentuk auxin. Ahli lainnya (Cmelin dan Virtanen, 1961) menerangkan bahwa Indoleacetonitrile yang terdapat pada tanaman, terbentuk dari Glucobrassicin atas aktivitas enzym Myrosinase. Dan zat organik lain (Indoleethanol) yang terbentuk dari Trypthopan dalam biosin. Thesis IAA adalah atas bantua bakteri (Rayle dan Purves, 1976).

METABOLISME AUXIN

Hasil penelitian terhadap metabolisme auxin menunjukan bahwa konsentrasi auxin di dalam tanaman mempengaruhi pertumbuhan tanaman. Adapun faktor-faktor yang mempengaruhi konsentrasi IAA ini adalah :

a.Sintesis Auxin

b.Pemecahan Auxin

c.In-aktifnya IAA sebagai akibat proses pemecahan molekul.

Sebagaimana diketahui, IAA adalah endogeneous auxin yang terbentuk dari Trypthopan yang merupakan suatu senyawa dengan inti Indole dan selalu terdapat dalam jaringan tanaman di dalam proses biosintesis. Trypthopan berubah menjadi IAA dengan membentuk Indole pyruvic acid dan Indole-3-acetaldehyde. Tetapi IAA ini dapat pula terbentuk dari Tryptamine yang selanjutnya menjadi Indole-3-acetaldehyde, selanjutnya menjadi Indole-3-acetid acid (IAA). Sedangkan mengenai perubahan Indole-3-acetonitrile menjadi IAA dengan bantuan enzym nitrilase prosesnya masih belum diketahui.

Pemecahan IAA dapat pula terjadi di dalam alam. Hal ini sebagai akibat adanya photo oksidasi dan enzyme. Dalam peristiwa photo oksidasi ini, pigmen pada tanaman akan menyerap cahaya kemudian energi ini dapat mengoksidasi IAA. Adapun pigmen yang berperan dalam photo oksidasi ialah Ribovlavin dan B-Carotene.
Ada hubungan yang berbanding terbalik antara aktivitas oksidasi IAA dengan kandungan IAA dalam tanaman. Dalam hal ini apabila kandungan IAA tinggi, maka aktivitas IAA oksidasi menjadi rendah, begitu pula sebaliknya. Di dalam daerah meristematic yang kadar auxinnya tinggi, ternyata aktivitas IAA oksidasinya rendah. Sedangkan di daerah perakaran yang kandungan auxinnya rendah, ternyata aktivitas IAA oksidasinya tinggi.
Proses lain yang menyebabkan inaktifnya IAA ialah karena adanya degradasi oleh photo oksidasi atau aktivitas suatu enzym.

STRUKTUR MOLEKUL DAN AKTIVITAS AUXIN

Menurut Koeffli, Thimann dan went (1966), aktivitas auxsin ditentukan oleh :

a.Adanya struktur cincin yang tidak jenuh,

b.Adanya rantai keasaman (acid chain).

c. Pemisahan karboksil grup (-COOH) dari struktur cincin.

d. Adanya pengaturan ruangan antara struktur cincin dengan rantai keasaman.

Keempat persyaratan diatas merupakan faktor yang menentukan terhadap aktivitas auxin.

Tentang sifat dari rantai keasaman, Koeffli (1966) menerangkan bahwa posisi dan panjang rantai keasaman, berpengaruh terhadap aktivitas auxin. Rantai yang mempunyai karboksil grup dipisahkan oleh karbon atau karbon dan oksigen akan memberikan aktivitas yang normal.

ARTI AUXIN BAGI FISIOLOGI TANAMAN.

Auxin sebagai salah satu hormon tumbuh bagi tanaman mempunyai peranan terhadap pertumbuhan dan perkembangan tanaman. Dilihat dari segi fisiologi, hormon tumbuh ini berpengaruh terhadap :

Pengembangan sel

Phototropisme

Geotropisme

Apical dominasi

Pertumbuhan akar (root initiation)

Parthenocarpy

Abisission

Pembentukan callus (callus formation)

Respirasi

PENGEMBANGAN SEL

Dari hasil studi tentang pengaruh auxin terhadap perkembangan sel, menunjukan bahwa terdapat indikasi yaitu auxin dapat menaikan tekanan osmotik, meningkatkan permeabilitas sel terhadap air, menyebabkan pengurangan tekanan pada dinding sel, meningkatkan sintesis protein, meningkatkan plastisitas dan pengembangan dinding sel.

Dalam hubungannya dengan permeabilitas sel, kehadiran auxin meningkatkan difusi masuknya air ke dalam sel. Hal ini ditunjang oleh pendapat Cleland dan Brustrom (1961) bahwa auxin mendukung peningkatan permeabilitas masuknya air ke dalam sel.

PHOTOTROPISME

Suatu tanaman apabila disinari suatu cahaya, maka tanaman tersebut akan membengkok ke arah datangnya sinar. Membengkoknya tanaman tersebut adalah karena terjadinya pemanjangan sel pada bagian sel yang tidak tersinari lebih besar dibanding dengan sel yang ada pada bagian tanaman yang tersinari. Perbedaan rangsangan (respond) tanaman terhadap penyinaran dinamakan phototropisme.

Terjadinya phototropisme ini disebabkan karena tidak samanya penyebaran auxin di bagian tanaman yang tidak tersinari dengan bagian tanaman yang tersinari. Pada bagian tanaman yang tidak tersinari konsentrasi auxinnya lebih tinggi dibanding dengan bagian tanaman yang tersinari.

GEOTROPISME

Geotropisme adalah pengaruh gravitasi bumi terhadap pertumbuhan organ tanaman. Bila organ tanaman yang tumbuh berlawanan dengan gravitasi bumi, maka keadaan tersebut dinamakan geotropisme negatif. Contohnya seperti pertumbuhan batang sebagai organ tanaman, tumbuhnya kearah atas. Sedangkan geotropisme positif adalah organ-organ tanaman yang tumbuh kearah bawah sesuai dengan gravitasi bumi. Contohnya tumbuhnya akar sebagai organ tanaman ke arah bawah.

Keadaan auxi dalam proses geotropisme ini, apabila suatu tanaman (celeoptile) diletakan secara horizontal, maka akumulasi auxin akan berada di dagian bawah. Hal ini menunjukan adanya transportasi auxin ke arah bawah sebagai akibat dari pengaruh geotropisme. Untuk membuktikan pengaruh geotropisme terhadap akumulasi auxin, telah dibuktikan oleh Dolk pd tahun 1936 (dalam Wareing dan Phillips 1970). Dari hasil eksperimennya diperoleh petunjuk bahwa auxin yang terkumpul di bagian bawah memperlihatkan lebih banyak dibanding dengan bagian atas.

Sel-sel tanaman terdiri dari berbagai komponen bahan cair dan bahan padat. Dengan adanya gravitasi maka letak bahan yang bersifat cair akan berada di atas. Sedangkan bahan yang bersifat padat berada di bagian bawah. Bahan-bahan yang dipengaruhi gravitasi dinamakan statolith (misalnya pati) dan sel yang terpengaruh oleh gravitasi dinamakan statocyste (termasuk statolith).

APICAL DOMINANCE

Di dalam pola pertumbuhan tanaman, pertumbuhan ujung batang yang dilengkapi dengan daun muda apabila mengalami hambatan, maka pertumbuhan tunas akan tumbuh ke arah samping yang dikenal dengan "tunas lateral" misalnya saja terjadi pemotongan pada ujung batang (pucuk), maka akan tumbuh tunas pada ketiak daun. Fenomena ini kita namakan "apical dominance"

Hubungan antara auxin dengan apical dominance pada suatu tanaman telah dibuktikan oleh Skoog dan Thimann (1975). Dalam eksperimennya, pucuk tanaman kacang (apical bud) dibuang, sebagai akibat treatment tersebut menyebabkan tumbuhnya tunas di ketiak daun. Dari ujung tanaman yang terpotong itu diletakan blok agar yang mengandung auxin. Dari perlakuan tersebut ternyata bahwa tidak terjadi pertumbuhan tunas pada ketiak daun. Hal ini membuktikan bahwa auxin yang ada di apical bud menghambat tumbuhnya tunas lateral.

PERPANJANGAN AKAR (ROOT INITIATION)

Dalam hubungannya dengan pertumbuhan akar, Luckwil (1956) telah melakukan suatu eksperimen dengan menggunakan zat kimia NAA (Naphthalene acetic acid), IAA (Indole acetid acid) dan IAN (Indole-3-acetonitrile) yang ditreatment pada kecambah kacang. Dari hasil eksperimennya diperoleh petunjuk bahwa ketiga jenis auxin ini mendorong pertumbuhan primordia akar. Perlu dikemukakan pula di sini, bahwa menurut Delvin (1975), pemberian konsentrasi IAA yang relatif tinggi pada akar, akan menyebabkan terhambatnya perpanjangan akar tetapi meningkatkan jumlah akar.

PERTUMBUHAN BATANG (STEM GROWTH)

Di dalam alam, hubungan antara auxin dengan pertumbuhan batang nyata erat sekali. Apabila ujung coleoptile dipotong, kemungkinan tanaman tersebut akan terhenti pertumbuhannya.

Di dalam tanaman, jaringan-jaringan muda terdapat pada apical meristem. Hubungannya dengan pertumbuhan tanaman peranan auxin sangat erat sekali. Dalam gambar diatas diperoleh petunjuk bahwa kandungan auxin yang paling tinggi terdapat pada pucuk yang paling rendah (basal).

PARTHENOCARPY

Di dalam alam sering kita menjumpai buah yang tidak berbiji. Seperti ; Anggur, Strawberry dan tanaman famili mentimun. Keadaan seperti ini disebabkan tidak dialaminya pembuahan pada perkembangan buah. Di dalam fisiologi, keadaan seperti ini dinamakan Parthenocarpy.

Di dalam proses Parthenocarpy, hormon auxin bertalian erat. Seperti dikemukakan massart (1902) hasil eksperimennya menunjukan bahwa pembengkakan dinding ovary bunga anggrek dapat distimulasi oleh tepung sari yang telah mati.
Pada tahun 1934 Yasuda berhasil menemukan penyebab Parthenocarpy dengan menggunakan ekstrak tepung sari pada bunga mentimun. Hasil analisisnya menunjukan bahwa ekstrak tersebut mengandung auxin. Selanjutnya pada tahun1936, Gustafon telah menemukan terjadinya Parthenocarpy dengan menggunakan IAA yang dicampur dengan lanolin pada stigma. Hasil penelitian Muir (1942) menunjukan pula bahwa kandungan auxin pada ovary yang mengalami pembuahan (pollination) meningkat bila dibandingkan dengan ovary yang tidak mengalami pembuahan.

PERTUMBUHAN BUAH (FRUIT GROWTH)

Peningkatan volume buah ada hubungannya dengan pertumbuhan buah. Keadaan ini akibat hasil pembelahan sel dan/atau pengembangan sel. Menurut Weaver (1972), fase pembelahan sel biasanya overlap dengan pengembangan sel (cell enlargementh). Keadaan perkembangan ini selalu diikuti oleh peningkatan ukuran buah.
Mengenai hubungannya dengan auxin, diterangkan oleh Muller-Thurgau dalam tahun 1898 bahwa endosperma dan embrio di dalam biji menghasilkan auxin yang menstimulasi pertumbuhan endosperma. Suatu anggapan mengenai peranan auxin dalam pertumbuhan buah, telah dibuktikan oleh Crane dalam tahun 1949 dengan menggunakan 2,4, 5-T sebagai exogenous auxin yang diaplikasikan pada blak berry, anggur, strawberry dan jeruk. Hasil penelitiannya menunjukan bahwa pertumbuhan buah lebih cepat 60 hari dari fase normal rata-rata 120 hari.

ABSCISSION

Abscission adalah suatu proses secara alami terjadinya pemisahan bagian/organ tanaman dari tanaman, seperti ; daun, bunga, buah atau batang.
Menurut Addicot (1964) maka dalam proses abscission ini faktor alami seperti ; dingin, panas, kekeringan, akan berpengaruh terhadap abscission. Dalam hubungannya dengan hormon tumbuh, maka mungkin hormon ini akan mendukung atau menghambat proses tersebut.

Di dalam proses abscission, akan terjadi perubahan-perubahan metabolisme dalam dinding sel dan perubahan secara kimia dari pectin dalam midle lamella.
Pembentukan lapisan abscission (abscission layer), kadang-kadang diikuti oleh susunan cell division proximal. Disini sel-sel baru akan berdiferensiasi ke dalam periderm dan membentuk suatu lapisan pelindung (Weaver, 1972).

Mengenai hubungan antara abscission dengan zat tumbuh auxin, Addicot et al (1955) mengemukakan sbb: Abscission akan terjadi apabila jumlah auxin yang ada di daerah proksimal (proximal region) sama atau lebih dari jumlah auxin yang terdapat di daerah distal (distal region). Tetapi apabila jumlah auxin yang berada di daerah distal lebih besar dari daerah proximal, maka tidak akan terjadi abscission. Dengan kata lain proses abscission ini akan terlambat.

Teori lain (Biggs dan Leopold 1957, 1958) menerangkan bahwa pengaruh auxin terhadap abscission ditentukan oleh konsentrasi auxin itu sendiri. Konsentrasi auxin yang tinggi akan menghambat terjadinya abscission, sedangkan auxin dengan konsentrasi rendah akan mempercepat terjadinya abscission.

Teori terakhir dikemukakan oleh Robinstein dan Leopold (1964) yang menerangkan bahwa respon abscission pada daun terhadap auxin dapat dibagi kedalam dua fase jika perlakuan auxin diberikan setelah daun terlepas. Fase pertama, auxin akan menghambat abscission, dan fase kedua auxin dengan konsentrasi yang sama akan mendukung terjadinya abscission.

SENESCENCE

Menurut Alex Comport (1956) dalam Leopold (1961) "senescence" adalah suatu penurunan kemampuan tumbuh (viability) disertai dengan kenaikan vulnerability suatu organisme. Namun di dalam tanaman, istilah ini diartikan; menurunnya fase pertumbuhan (growth rate) dan kemampuan tumbuh (vigor) serta diikuti dengan kepekaan (susceptibility) terhadap tantangan lingkungan, penyakit atau perubahan fisik lainnya.

Ciri dari fenomena ini selalu diikuti dengan kematian.
Di dalam alam, senescence terjadi pada daun, batang dan buah. Menurut Leopold (1961) ada empat bentuk senescence yang terjadi pada tanaman yaitu :
1.Semua organ tumbuh mengalami senescence (over-all senescence)
2.Senescence yang terjadi pada bagian atas (top senescence)
3.Senescence yang terjadi seluruh bagian daun dan buah (decideus senescence)
4.Senescence berkembang dari daun paling bawah menuju kearah atas (progresive senescence)
.

Ciri-ciri terjadinya senescence dapat ditemukan pada morfologi dan perubahan di dalam organ atau seluruh tubuh tanaman. Keadaan seperti ini diikuti oleh meningkatnya abscission serta daun dan buah berguguran dari batang pokok. Begitu pula pertumbuhan dan pigmentasi warna hijau berubah menjadi warna kuning, yang akhirnya buah dan daun terlepas dari batang pokok.

GIBBERELLIN

Gibberellin adalah jenis hormon tumbuh yang mula-mula diketemukan di Jepang oleh Kurosawa pada tahun 1926. Penelitian lanjutan dilakukan oleh Yabuta dan Hayashi (1939). Ia dapat mengisolasi crystalline material yang dapat menstimulasi pertumbuhan pada akar kecambah. Dalam tahun 1951, Stodola dkk melakukan penelitian terhadap substansi ini dan menghasilkan "Gibberelline A" dan "Gibberelline X". adapun hasil penelitian lanjutannya menghasilkan GA1, GA2, dan GA3.

Pada saat yang sama dilakukan pula penelitian di Laboratory of the Imperial Chemical Industries di Inggris sehingga menghasilkan GA3 (Cross, 1954 dalam Weaver 1972). Nama Gibberellin acid untuk zat tersebut telah disepakati oleh kelompok peneliti itu sehingga populer sampai sekarang.

KEJADIAN DI DALAM ALAM

Di dalam alam telah ditemukan lebih dari sepuluh buah jenis gibberellin. Menurut Mac Millan dan Takashashi (1968), Kang (1970) dan Weaver (1972), gibberellin ada yang diketemukan dalam jamur Gibberella Fujikuroi, ada yang diketemukan pada tanaman tinggi dan ada juga yang diketemukan pada keduanya.
Jenis gibberellin yang diketemukan pada jamur yaitu ; GA1, GA2, GA3, GA4, GA7, GA9, s.d GA16, GA24, GA25, GA36. Sedangkan jenis gibberellin yang diketemukan pada tanaman derajat tinggi yaitu ; GA1, s.d GA9, GA13, GA17, s.d GA23, GA26, s.d GA35. Dan yang terakhir yaitu gibberellin yang diketemukan pada jamur dan tanaman derajat tinggi yaitu ; GA1, s.d GA4, GA7, GA9, dan GA13.
Gibberellin ; GA1 s.d GA5, GA7 s.d GA9, GA19, GA20, GA26, GA27, dan GA29 diketemukan pada Pharbitis nil, GA1, GA5, GA8, GA9, GA13, diketemukan pada umbi tulip, kemudian GA3, GA4, GA7, diketemukan pada anggur, GA18, GA19, GA20, diketemukan pada pucuk bambu, GA3, GA4, GA7, dijumpai pada biji apel, selanjutnya GA21, dan GA22, dijumpai pada sword bean. Pada tanaman lain yaitu : Lipinus lutens (GA18, GA23, GA28), pada pucuk tanaman jeruk dan biji mentimun diketemukan GA1, tebu (GA5), pisang (GA7), kacang, jagung, barley wheat diketemukan GA1. Adapun pada tanaman Phaseolus coclirecus diketemukan ; GA1, GA3 s.d GA6, GA8, GA13, GA17, dan GA20. Kemudian pada Rudbeckia bicolor diketemukan ; GA1, GA4, GA7, s.d GA9. Dan yang terakhir yaitu pada Calonyction aculeatum diketemukan : GA30, GA31, GA33, dan GA34. Hasil penelitian Meizger dan Zeivaart (1980) menunjukan bahwa pada pucuk bayam (spinach) didapatkan gibberellin ; GA53, GA44, GA19, GA17, GA20, dan GA29,.

METABOLISME GIBBERELLINE

Gibberellin adalah zat kimia yang dikelompokan kedalam terpinoid. Semua kelompok terpinoid terbentuk dari unit isoprene yang terdiri dari 5 atom karbon.

CC-C-CC

Unit Isoprene (5-C)

Unit-unit isoprene ini dapat bergabung sehingga menghasilkan monoterpene (C-10), Sesqueterpene (C-15), diterpene (C-20) dan triterpene (C-30). Biosintesis gibberelline yang terdapat dalam jamur Gibberella Fujikuroi berproses dari Mevalonic acid sampai menjadi gibberellin. Di dalam proses biosintesis telah diketemukan zat penghambat (growth retardant) di dalam aktivitas ini. Beberapa contoh growth retardant yang menghambat biosintesis gibberelline pada tanaman antara lain Amo-1618 (2-isopropil-4-dimetil-kamine-5 metil phenil-4pipendine karboksilatmetil klorida) menghambat biosintesis gibberelline pada tanaman mentimun liar (Exhmocytis macrocarpa). Amo-1618 menghambat dalam proses perubahan dari Geranylgeranyl pyrophosphat ke Kaurene. Begitu pula growth retardant CCC (2-chloroethyl) trimethyl (-amonium chloride) memperlihatkan aktivitas yang sama dengan Amo-1618.

STRUKTUR MOLEKUL DAN AKTIVITAS GIBBERELLINE

Gibberelline merupakan suatu compound (senyawa) yang mengandung "gibban skeleton".

Menurut Weaver (1972), perbedaan utama pada gibberelline adalah:
a. Beberapa gibberelline mempunyai 19 buah atom karbon dan yang lainnya mempunyai

20 buah atom karbon.

b. Grup hidroksil berada dalam posisi 3 dan 13 (ent gibberellene numbering system)

Semua gibberelline dengan 19 atom karbon adalah monocarboxylic acid yang mengandung COOH grup pada posisi 7 dan mempunyai sebuah lactonering.
Di dalam alam, dijumpai pula beberapa senyawa yang di ekstrak dari tanaman. Senyawa tersebut tidak mengandung gibberelline atau gibberellane structure tetapi termasuk ke dalam gibberelline. Dari hasil penelitian Tamura dkk, ia menemukan suatu substansi dalam jamur Helminthosporium sativum yang dinamakan "helminthosporol" yang aktif dalam perpanjangan daun pada kecambah padi dan barley. Senyawa lain yang ditemukan tanpa gibban skeleton yaitu "Steviol", namun aktivitasnya seperti gibberelline.
OHOHCOCH2HOHCOOHHCH3H GA3 (gibberellic acid)

ARTI GIBBERELLIN BAGI FISIOLOGI TANAMAN

Gibberellin sebagai hormon tumbuh pada tanaman sangat berpengaruh pada sifat genetik (genetic dwarfism), pembuangan, penyinaran, partohenocarpy, mobilisasi karbohidrat selama perkecambahan (germination) dan aspek fisiologi kainnya. Gibberelline mempunyai peranan dalam mendukung perpanjangan sel (cell elongation), aktivitas kambium dan mendukung pembentukan RNA baru serta sintesa protein.

Geneticdwarfism

Genetic dwarfism adalah suatu gejala kerdil yang disebabkan oleh adanya mutasi. Gejala ini terlihat dari memendeknya internode. Terhadap Genetic dwarfism ini, gibberelline mampu merubah tanaman yang kerdil menjadi tinggi. Hal ini telah dibuktikan oleh Brian dan Hemming (1955). Dalam eksperimennya mereka telah memberi perlakuan penyemprotan gibberellic acid pada berbagai varietas kacang. Hasil dari eksperimen ini menunjukan bahwa gibberellic acid berpengaruh terhadap tanaman kacang yang kerdil dan menjadi tinggi.

Mengenai hubungannya dengan cell elengation, dikemukakan bahwa gibbberelline mendukung pengembangan dinding sel.
Menurut van Oberbeek (1966) penggunaan gibberelline akan mendukung pembentukan enzym protolictic yang akan membebaskan tryptophan sebagai asal bentuk dari auxin. Hal ini berarti bahwa kehadiran gibberelline tersebut akan meningkatkan kandungan auxin.

Mekanisme lain menerangkan bahwa gibberelline akan menstimulasi cell elengation, karena adanya hidrolisa pati yang dihasilkan dari gibberelline, akan mendukung terbentuknya a amilase. Sebagai akibat dari proses tersebut, maka konsentrasi gula meningkat yang mengakibatkan tekanan osmotik di dalam sel menjadi nai, sehingga ada kecenderungan sel tersebut berkembang.

Pembungaan (flowering)

Gibbereline sebagai salah satu hormon tumbuh pada tanaman, mempunyai peranan dalam pembungaan. Penelitian yang dilakukan Henny (1981) pada bungan spothiphyllum Mauna loa. Dengan memberikan perlakuan GA3 dengan dosis: 250, 500 dan 1000 mg/l. hasil eksperimen tsb dapat dilihat pada tabel dibawah.

Tabel 1. Pengaruh GA3 terhadap pembungaan Spathiphyllum Mauna Loa
GA3 (mg/l)
Pembangunan (%) minggu setelah perlakuan
10
12 14 16 18 2 0
0 0 0 0 0
0 10
250 0 0
30 70 70 90
500
20 50 70 100 100 100
1000 0 60 90 100 100 100

Parthenocarpy dan fruit set

Seperti auxin, gibberelline pun berpengaruh terhadap Parthenocarpy. Hasil penelitian menunjukan bahwa gibberellic acid (GA3) lebih efektif dalam terjadinya Parthenocarpy dibanding dengan auxin yang dilakukan pada blueberry. Hasil eksperimen lain menunjukan pula bahwa GA3 dapat meningkatkan tandan buah (fruit set) dan hasil.

Peranan Gibberellin dalam pematangan buah (fruit ripening)

Pematangan (ripening) adalah suatu proses fisiologis, yaitu terjadinya perubahan dari kondisi yang tidak menguntungkan ke suatu kondisi yang menguntungkan, ditandai dengan perubahan tekstur, warna, rasa dan aroma.

Dalam proses pematangan ini, gibberelline mempunyai peran penting yaitu mampu mengundurkan pematangan (repening) dan pemasakan (maturing) suatu jenis buah.

Dari hasil penelitian menunjukan aplikasi gibberelline pada buah tomat dapat memperlambat pematangan buah, sedangkan gibberellic acid yang diterapkan pada buah pisang matang, ternyata pemasakannya dapat ditunda.

Mobilisasi bahan makanan selama fase perkecambahan (germination)

Biji cerealia terdiri dari embrio dan endosperm. Didalam endosperm terdapat masa pati (starch) yang dikelilingi oleh suatu lapisan "aleuron".. sedangkan embrio itu sendiri merupakan suatu bagian hidup yang suatu saat akan menjadi dewasa. Pertumbuhan embrio selama perkecambahan bergantung pada persiapan bahan makanan yang berada di dalam endosperm. Untuk keperluan kelangsungan hidup embrio maka terjadilah penguraian secara enzimatik yaitu terjadi perubahanpati menjadi gula yang selanjutnya ditranslokasikan ke embrio sebagai sumber energi untuk pertumbuhannya.
Dari hasil penelitian menunjukan bahwa gibberelline berperan penting dalam proses aktivitas amilase. Hal ini telah dibuktikan dengan menggunakan GA yang mengakibatkan aktivitas amilase miningkat.

Aktivitas enzym a amilase dan protease di dalam endosperm juga didukung oleh GA melalui de novo synthesis. Hal ini ada hubungannya dengan terbentuknya DNA baru yang kemudian menghasilkan RNA.

Stimulasi aktivitas cambium dan perkembangn xylem

Gibberelline mempunyai peranan dalam aktivitas kambium dan perkembangn xylem. Aplikasi GA3 dengan konsentrasi 100, 250, dan 500 ppm mendukung terjadinya diferensiasi xylem pada pucuk olive. Begitu pula dengan mengadakan aplikasi GA3 + IAA dengan konsentrasi masing-masing 250 dan 500 ppm, maka terjadi pengaruh sinergis pada xylem. Sedangkan aplikasi auxin saja tidak memberi pengaruh pada tanaman.

Dormansi

Dormansi adalah masa istirahat bagi suatu organ tanaman atau biji. Menurut Copeland (1976), dormansi adalah kemampuan biji untuk mengundurkan fase perkecambahannya hingga saat dan tempat itu menguntungkan untuk tumbuh.
Secara umum terjadinya dormansi adalah disebabkan oleh faktor luar dan faktor dalam. Faktor yang menyebabkan dormansi pada biji adalah sbb:
1.Tidak sempurnanya embrio (rudimentery embriyo)

2.Embrio yang belum matang secara fisikologis (physiological immature embriyo)
3.Kulit biji yang tebal (tahan terhadap gerakan mekanis)
4.Kulit biji impermeable ( impermeable seed coat)

5.Adanya zat penghambat (inhibitor) untuk perkecambahan (presence of germination inhibitors).

Fase yang terjadi dalam dorminasi biji, menurut Amen (1968) ada empat fase yang harus dilalui :

1.Fase induksi, ditandai dengan terjadinya penurunan jumlah hormon (hormon level)
2.Fase tertundanya metabolisme (a period of partial metabolic arrest)
3.Fase bertahannya embrio untuk berkecambah karena faktor lingkungan yang tidak

menguntungkan.
4.Perkecambahan (germination), ditandai dengan meningkatnya hormon dan aktivitas

enzym.

Peranan hormon tumbuh di dalam biji yang mengalami dorminasi telah dibahas oleh warner (1967) yang mengatakan bahwa GA3 dapat menstimulasi sintesis ribonukleas, amilase dan protoase di dalam endospem biji barley.

CYTOKININ

Cytokinin adalah salah satu zat pengatur tumbuh yang ditemukan pada tanaman. Zat pengatur tumbuh ini mempunyai peranan dalam proses pembelahan sel (cell division).

Cytokinin pertama kali ditemukan dalam kultur jaringan di Laboratories of Skoog and Strong University of Wisconsin. Material yang dipergunakan dalam penelitian ini adalah batang tembakau yang ditumbuhkan pada medium sintesis. Menurut Miller et al (1955, 1956), senyawa yang aktif adalah kinetin (6-furfuryl amino purine). Hasil penelitian menunjukan bahwa purine adenin sangat efektif.

Struktur kimia Cytokinin

Bentuk dasar dari cytokinin adalah adenin (6-amino purine). Adenin merupakan bentuk dasar yang menentukan terhadap aktifitas cytokinin. Di dalam senyawa cytokinin, panjang rantai dan hadirnya suatu double bond dalam rantai tersebut akan meningkatkan aktifitas zat pengatur tumbuh ini.

NH2NNHAdenine (6-amino purine)

Arti Cytokinin bagi fisiologi tanaman

Penelitian pertumbuhan pith tissue culture dengan menggunakan cytokinin dan auxin dalam berbagai perbandingan telah dilakukan oleh Weier et al (1974). Dihasilkan bahwa apabila dalam perbandingan cytokinin lebih besar dari auxin, maka hal ini akan memperlihatkan stimulasi pertumbuhan tunas dan daun. Sebaliknya apabila cytokinin lebih rendah dari auxin, maka ini akan mengakibatkan stimulasi pada pertumbuhan akar. Sedangkan apabila perbandingan cytokinin dan auxin berimbang, maka pertumbuhan tunas, daun dan akar akan berimbang pula. Tetapi apabila konsentrasi cytokinin itu sedang dan konsentrasi auxin rendah, maka keadaan pertumbuhan tobacco pith culture tersebut akan berbentuk callus.

Sedangkan dalam pembelahan sel, dikemukakan bahwa IAA dan kinetin, apabila digunakan secara tersendiri akan menstimulasi sintesis DNA dalam tobacco pith culture. Dan menurut ahli tsb, kehadiran IAA dan kinetin ini diperlukan dalam proses mitosis walaupun IAA lebih dominan pada fase tersebut.

Interaksi Cytokinin, Gibberellin dan Auxin dalam perkembangan tanaman

Di dalam alam tidak satu unsurpun yang berdiri sendiri. Kesemuanya berinteraksi antara satu sama lainnya, sehingga merupakan suatu sistem. Begitu pula dengan zat pengatur tumbuh.

Pada tanaman, zat pengatur tumbuh auxin, gibberellin dan cytokinin bekerja tidak sendiri-sendiri, tetapi ketiga hormon tersebut bekerja secara berinteraksi yang dicirikan dalam perkembangan tanaman.

ETHYLENE

Ethylene adalah hormon tumbuh yang secara umum berlainan dengan Auxin, Gibberellin, dan Cytokinin. Dalam keadaan normal ethylene akan berbentuk gas dan struktur kimianya sangat sederhana sekali. Di alam ethilene akan berperan apabila terjadi perubahan secara fisiologis pada suatu tanaman. hormon ini akan berperan pada proses pematangan buah dalam fase climacteric.

Penelitian terhadap ethylene, pertama kali dilakukan oleh Neljubow (1901) dan Kriedermann (1975), hasilnya menunjukan gas ethylene dapat membuat perubahan pada akar tanaman. Hasil penelitian Zimmerman et al (1931) menunjukan bahwa ethylene dapat mendukung terjadinya abscission pada daun, namun menurut Rodriquez (1932), zat tersebut dapat mendukung proses pembungaan pada tanaman nanas.

Penelitian lain telah membuktikan tentang adanya kerja sama antara auxin dan ethylene dalam pembengkakan (swelling) dan perakaran dengan cara mengaplikasikan auxin pada jaringan setelah ethylene berperan. Hasil penelitian menunjukan bahwa kehadiran auxin dapat menstimulasi produksi ethylene.

Struktur kimia dan Biosintesis ethylene

Struktur kimia ethylene sangat sederhana yaitu terdiri dari 2 atom karbon dan 4 atom hidrogen seperti gambar di bawah ini :

H H
C=C
H H
Ethylene

Biosintesis ethylene terjadi di dalam jaringan tanaman yaitu terjadi perubahan dari asam amino methionine atas bantuan cahaya dan FMN (Flavin Mono Nucleotide) menjadi Methionel. Senyawa tersebut mengalami perubahan atas bantuan cahaya dan FMN menjadi ethykene, methyl disulphide, formic acid.

Peranan ethylene dalam fisiologi tanaman

Di dalam proses fisiologis, ethylene mempunyai peranan penting. Wereing dan Phillips (1970) telah mengelompokan pengaruh ethylene dalam fisiologi tanaman sbb:
a. Mendukung respirasi climacteric dan pematangan buah

b. Mendukung epinasti

c. Menghambat perpanjangan batang (elengation growth) dan akar pada beberapa species

tanaman walaupun ethylene ini dapat menstimulasi perpanjangan batang, coleoptyle

dan mesocotyle pada tanaman tertentu, misalnya Colletriche dan padi.
d. Menstimulasi perkecambahan

e. Menstimulasi pertumbuhan secara isodiametrical lebih besar dibandingkan dengan

pertumbuhan secara longitudinal

f. Mendukung terbentuknya bulu-bulu akar

g. Mendukung terjadinya abscission pada daun

h. Mendukung proses pembungaan pada nanas

i. Mendukung adanya flower fading dalam persarian anggrek

j. Menghambat transportasi auxin secara basipetal dan lateral

k.Mekanisme timbal balik secara teratur dengan adanya auxin yaitu konsentrasi auxin

yang tinggi menyebabkan terbentuknya ethylene.

Tetapi kehadiran ethylene Menyebabkan rendahnya konsentrasi auxin di dalam jaringan.

Hubungannya dengan konsentrasi auxin, hormon tumbuh ini menentukan pembentukan protein yang diperlukan dalam aktifitas pertumbuhan, sedangkan rendahnya konsentrasi auxin, akan mendukung protein yang akan mengkatalisasi sintesis ethylene dan precursor.

Peranan ethylene dalam proses pematangan buah

Harsen (1967) dalam Dilley (1969) telah mempelajari hubungan antara ethylene dengan tingkat kematangan pada buah pear. Ia mengemukakan bahwa pematangan ini menjadi suatu sequential dalam proses kesinambungan kehidupan buah. Menurut konsep tsb, ethylene berpebgaruh terhadap beberapa yang mengontrol pola normal dari proses pematangan.

Menurut Frenkel et al (1968), sintesa protein diperlukan pada tingkat pematangan yang normal. Protein disintesa secepatnya dalam proses pematangan. Dari hasil eksperimen terhadap buah pear, memperlihatkan bahwa pematangan buah dan sintesa protein terhambat sebagai akibat perlakuan cycloheximide pada permulaan fase climacteric. Setelah cycloheximide hilang, ternyata sintesis ethylene tidak mengalami hambatan.

Di dalam proses pematangan, ribonucleic acid synthesis pun diperlukan. Dalam eksperimen menggunakan buah pear, buah tersebut ditreated, dengan actinomysin D pada tingkat pre climacteric. Dari hasil eksperimen ini diperoleh petunjuk bahwa actinomysin D menghambat terbentuknya DNA yang bergantung pada RNA sintesis.
Imascshi et al (1968) mengemukakan bahwa ethylele mendukung peningkatan aktivitas metabolisme dalam jaringan akar ubi jalar. Ethylene yang berkonsentrasi 0,1 ppm, menstimulasi perkembangan peroxidase dan phenyl alanine ammonialyase. Penelitian lain mengemukakan bahwa perlakuan ethylene pada kecambah kapas menstimulasi aktivitas peroksida dan IAA oksida.

Interaksi ethylene dengan auxin dan kinetin

Dari hasil penelitian terhadap tanaman kacang (pea), menunjukan bahwa pembentukan ethylene lebih tampak pada jaringan meristem tempat auxin dihasilkan. Disini IAA mengontrol pembentukan ethylene dalam perpanjangan batang pea. Kehadiran kinetin dalam pertumbuhan tunas lateral dapat mengatasi penghambatan yang diakibatkan oleh IAA. Hasil penelitian lain menunjukan bahwa adanya penghambatan transportasi auxin oleh endogenous ethylene yang menyebabkan terjadinya abscission pada daun.

INHIBITORS

Yang dimaksud dengan istilah inhibitor adalah zat yang menghambat pertumbuhan pada tanaman, sering didapat pada proses perkecambahan, pertumbuhan pucuk atau dalam dormansi.

Di dalam tanaman, inhibitor menyebar disetiap organ tubuh tanaman tergantung dari jenis inhibitor itu sendiri. Menurut weaver (1972), beberapa jenis inhibitor adalah merupakan bentuk phenyl compound termasuk phenol, benzoic acid, cinamic acid dan coffeic acid. Gallic acid dan shikimic acid merupakan turunan dari benzoic acid. Selanjutnya ia mengemukakan pula bahwa gallic acid dapat diketemukan pada buah yang matang, sedangkan ferulic acid dan p-coumaric acid merupakan ko faktor untuk IAA oksida.

Di dalam alam, abscisic acid dapat dijumpai pada daun, batang, rizoma, ubi (tuber), tunas (bud), tepung sari, buah, embrio, endosperm, ataupun kulit biji (seed coat) misalnya pada tanaman kentang, kacang, apel, adpokat rose dan kelapa.
Plant growth retardant adalah inhibitor yang berperan dalam menghambat aktivitas apical meristematic. Zat kimia yang dikelompokan dalam growth retardant adalah : Amo-1618, Phosfon-D, CCC (cycocel), SADH (succinic acid-2,2-dimethyl hyrdazide) dan Morphactins (methyl-2-chloro-9-hydroxy fluorene-9-carboxylate/IT 3456 dan n-butyl-9-hydroxyfluerene-9-carboxylate/IT 3233).

PERANAN INHIBITOR DI DALAM TANAMAN

a.Abscissic Acid

Di dalam tanaman, Abscissic acid (ABA) menyebar di dalam jaringan. Inhibitor ini mempunyai fungsi atau peranan yang berlawanan dengan zat pengatur tumbuh: auxin, gibberellin, dan cytokinin.

b. Plant Growth Retardant

Plant growth retardant adalah inhibitor yang berlawanan dengan kegiatan gibbberellin pada perpanjangan batang. Hal ini terbukti dari hasil penelitian Lang dkk dengan menggunakan CCC dan Amo-1618 pada jamur fusarium moniliforme dan tanaman derajat tinggi. Ternyata bahwa sintesis gibberellin diblokir sehingga gibberellin tersebut tidak berpengaruh. Sedangkan SADH menghambat diamin oksida (yang berperan dalam perubahan tryptamine menjadi IAA).

Secara garis besar ternyata inhibitor ini menghambat aktivitas auxin, gibberellin dan cytokinin. ABA sebagai salah satu jenis inhibitor mendukung dormansi, abscission dan senscence. Sedangkan SADH, CCC, Phosfon-D dan Amo-1618 menghambat perpanjangan batang (cell elongation). Growth retardant ini aktifasinya berlawanan dengan gibberellin.

MH (Maleic Hydrazide) sering digunakan sebagai herbisida dalam konsentrasi yang tinggi. Aktifitas MH ini menghambat aktifitas meristematic, sehingga menghambat perpanjangan batang. Begitu pula morphactin dan turunannya, dengan menggunakan konsentrasi yang tinggi, dapat dipergunakan sebagai weed killer. Peranan bahan kimia ini adalah menghambat perpanjangan batang dan berfungsi pula untuk memecahkan auxillary bud.

Diposkan oleh Borneo_culture di 05:16 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: ZPT

SEJARAH BUDIDAYA JARINGAN TUMBUHAN

Tokoh-tokoh yang berperan dalam sejarah dimulainya pengetahuan kultur jaringan antara lain adalah:
• Orang yang melakukan kultur jaringan adalah Gottlieb Haberlant pada tahun 1902.
• Tahun 1904 Hannig melakukan kultur embrio pada tanaman cruciferae.
• Knudson berhasil mengecambahkan anggrek secara in vitro di tahun 1922, pada tahun yang sama Robbins mengkulturkan ujung akar secara in vitro.
• Gautheret, nobecourt dan White yang menemukan auxin dan telah berhasil membudidayakan kalus pada tahun 1939.
• Skoog dkk. telah menemukan sitokinin dan orang pertama yang sukses dalam melakukan kultur jaringan pada tahun 1939.
• Tahun 1940 Gautheret melakukan ku.ltur jaringan kambim secara in vitro pada tanaman Ulmus untuk study pembentukan tunas adventif.
• Tahun 1941 Penggunaan air kelapa untuk campuran media dalam kultur Datura oleh van Overbeek.
• Pembentukan tunas adventif pertama pada kultur tembakau secara in vitro oleh Skoog pada tahun 1944.
• Baru pada tahun 1946, tanaman lengkap pertama dapat dihasilkan dari eksplan kultur tunas ujung pada Lupinus dan Tropaeolum oleh Ball.
• Pada tahun 1950 Ball mencoba menanam jaringan kalus tanaman Sequoia sempervirens dan dapat menghasilkan organ.
• Muir berhasil menumbuhkan tanaman lengkap dari kultur sel tunggal pada tahun 1954.
• Tahun 1955 Miller dkk. Menemukan kinetin yang dapat memacu pembelahan sel.
• Produksi tanaman haploid pertama dihasilkan oleh Guha pada tahun 1964.
• Laminar air flow digunakan pertamakali pada akhir tahun 60-an.
• Power mencoba melakukan penyatuan (fusi) protoplas pertama kali pada tahun 1970.
• Baru pada tahun 1971 tanaman lengkap dihasilkan dari eksplan protoplas oleh Takebe.
• Untuk mendapatkan tanaman yang tahan penyakit, Larkin pada tahun 1981 mengadakan penelitian variasi somaklonal yang pertama kali.
• Salah satu cara untuk mendapatkan kultuvar unggul adalah dengan melakukan transformasi. Transformasi sel pertama dilakukan oleh Horch pada tahun 1984.
• Trasformasi tanaman pertama dilakukan oleh IPTC pada tahun 1986.
• Transformasi wheat oleh Vasil pada tahun 1992.
• Pada tahun 1996 pelepasan pertama tanaman hasil transformasi genetik.

Diposkan oleh Borneo_culture di 05:15 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

TIPE-TIPE KULTUR JARINGAN

Kultur jaringan (tissue culture) sampai saat ini digunakan sebagai suatu istilah umum yang meliputi pertumbuhan kultur secara aseptik dalam wadah yang umumnya tembus cahaya. Sering kali kultur aseptik disebut juga kultur in vitro yang artinya sebenarnya adalah kultur di dalam gelas.

Dalam pelaksanaannya dijumpai beberapa tipe-tipe kultur, yakni:

1. Kultur biji (seed culture), kultur yang bahan tanamnya menggunakan biji atau seedling.

2. Kultur organ (organ culture), merupakan budidaya yang bahan tanamnya menggunakan organ, seperti: ujung akar, pucuk aksilar, tangkai daun, helaian daun, bunga, buah muda, inflorescentia, buku batang, akar dll.

3. Kultur kalus (callus culture), merupakan kultur yang menggunakan jaringan (sekumpulan sel) biasanya berupa jaringan parenkim sebagai bahan eksplannya.

4. Kultur suspensi sel (suspension culture) adalah kultur yang menggunakan media cair dengan pengocokan yang terus menerus menggunakan shaker dan menggunakan sel atau Agregat sel sebagai bahan eksplannya, biasanya eksplan yang digunakan berupa kalus atau jaringan meristem.

5. Kultur protoplasma. eksplan yang digunakan adalah sel yang telah dilepas bagian dinding selnya menggunakan bantuan enzim. Protoplas diletakkan pada media padat dibiarkan agar membelah diri dan membentuk dinding selnya kembali. Kultur protoplas biasanya untuk keperluan hibridisasi somatik atau fusi sel soma (fusi 2 protoplas baik intraspesifik maupun interspesifik).

6. Kultur haploid adalah kultur yang berasal dari bagian reproduktif tanaman, yakni: kepalasari/ anther (kultur anther/kultur mikrospora), tepungsari/ pollen (kutur pollen), ovule (kultur ovule), sehingga dapat dihasilkan tanaman haploid.

Diposkan oleh Borneo_culture di 05:13 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: TIPE

PERANAN KULTUR JARINGAN

A. Dalam bidang Hortikultura.

Kultur jaringan sudah diakui sebagai metode baru dalam perbanyakan tanaman. Tanaman yang pertama berhasil diperbanyak secara besar-besaran melalui kultur jaringan adalah tanaman anggrek, menyusul berbagai tanaman hias, sayuran, buah-buahan, pangan dan tanaman hortikultura lainnya. Selain itu juga saat ini telah dikembangkan tanaman perkebunan dan tanaman kehutanan melalui teknik kultur jaringan. Terutama untuk tanaman yang secara ekonomi menguntungkan untuk diperbanyak melalui kultur jaringan, sudah banyak dilakukan secara industrial. Namun ada beberapa tanaman yang tidak menguntungkan bila dikembangkan dengan kultur jaringan, misalnya: kecepatan multiplikasinya terlalu rendah, terlalu banyak langkah untuk mencapai tanaman sempurna atau terlalu tinggi tingkat penyimpangan genetik.
Dalam bidang hortikultura, kultur jaringan sangat penting untuk dilakukan terutama pada tanaman-tanaman yang:
1. Prosentase perkecambahan biji rendah.
2. Tanaman hibrida yang berasal dari tetua yang tidak menunjukkan male sterility.
3. Tanaman hibrida yang mempunyai keunikan di salah satu organnya (bentuk atau warna, Bunga, buah, daun, batang dll).
4. Perbanyakan pohon-pohon elite dan/atau pohon untuk batang bawah.
5. Tanaman yang selalu diperbanyak secara vegetatif, seperti: kentang, pisang, stroberry dll.
B. Dalam bidang agronomi
Kultur jaringan sangat membantu dalam usaha eliminasi patogen. Dengan metode ini dapat dipilih bagian atau sel-sel yang tidak mengandung sel-sel yang tidak mengandung patogen, terutama virus dan menumbuhkan sel-sel tersebut serta meregenerasikan kembali menjadi tanaman lengkap yang sehat. Secara konvensional tidak ada cara yang efektif untuk menghilangkan virus dari bahan tanaman. Kultur meristem yang disertai perlakuan temperatur 38-40oC selama beberapa waktu, dapat menghilangkan virus dari bahan tanaman. Bahan yang bebas patogen ini juga memudahkan pertukaran plasma nutfah internasional.

Seleksi tanaman merupakan kegiatan agronomi yang telah ada sejak manusia mulai membudidayakan tanaman. Pada metode konvensional, seleksi tanaman memerlukan jumlah tanaman yang banyak sekali pada lahan yang luas, dengan pemeliharaan yang intensif serta waktu yang lama. Dengan berkembangnya kultur jaringan, ditemukan hasil yang tidak terduga. Dalam kultur yang membentuk sel-sel bebas, terjadi variasi somaklonal dalam hal morfologi, produksi, pola pertumbuhan dan resistensi terhadap penyakit. Dengan media seleksi, beberapa lini-lini sel ini dapat dibedakan dari sel-sel lini yang biasa dalam beberapa petri-dish.

C. Dalam bidang pemuliaan tananaman
Dalam bidang pemuliaan tanaman yang komersial, banyak ditemui kegagalan pembentukan embrio yang viable. Kegagalan disebabkan oleh hambatan pada polinasi, pertumbuhan pollen-tube, fertilisasi dan perkembangan embrio atau endosperm. Setelah kultur protoplasma berkembang, diharapkan hambatan ini dapat dikurangai dengan metode fusi protoplasma atau injeksi organel dan sitoplasma dari sel yang satu ke sel lain.
Teknik kultur jaringan dapat diterapkan dalam bidang pemuliaan tanaman terutama untuk mempercepat pencapaian tujuan dan membantu jika cara-cara konvensional menemui rintangan alamiah. Melaui teknik kultur jaringan dapat dilakukan manipulasi sebagai berikut:
1. Manipulasi jumlah kromosom melalui bahan kimia atau meregenerasikan jaringan tertentu dalam tanaman seperti: endosperma yang mempunyai kromosom 3n.
2. Tanaman haploid dan double haploid yang homogeneous melalui kultur anther atau mikrospora.
3. Polinasi in vitro dan pertumbuhan embrio yang secara normal abortif.
4. Hibridisasi somatik melalui teknik fusi protoplasma baik intraspesifik maupun interspesifik.
5. Variasi somaklonal.
6. Transfer DNA atau organel untuk memperoleh sifat tertentu.

Diposkan oleh Borneo_culture di 05:11 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: PERANAN

LANDASAN KULTUR JARINGAN

Landasan kultur jaringan didasarkan atas tiga kemampuan dasar dari tanaman, yaitu:

1. Totipotensi adalah potensi atau kemampuan dari sebuah sel untuk tumbuh dan berkembang menjadi tanaman secara utuh jika distimulasi dengar benar dan sesuai. Implikasi dari totipotensi adalah bahwa semua informasi tentang pertumbuhan dan perkembangan suatu organisme terdapat di dalam sel. Walaupun secara teoritis seluruh sel bersifat totipotensi, tetapi yang mengekspresikan keberhasilan terbaik adalah sel yang meristematik.

2. Rediferensiasi adalah kemampuan sel-sel masak (mature) kembali menjadi ke kondisi meristematik dan dan berkembang dari satu titik pertumbuhan baru yang diikuti oleh rediferensiasi yang mampu melakukan reorganisasi manjadi organ baru.

3. Kompetensi menggambarkan potensi endogen dari sel atau jaringan untuk tumbuh dan berkembang dalam satu jalur tertentu. Cantohnya embrioagenikali kompeten cel adalah kemampuan untuk berkembang menjadi embrio funsional penuh. Sebaliknya adalah non-kompeten atau morfogenetikali tidak mempunyai kemampuan.

Diposkan oleh Borneo_culture di 05:08 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: LANDASAN

KULTUR JARINGAN TANAMAN

KULTUR JARINGAN TANAMAN

Kultur jaringan bila diartikan ke dalam bahasa Jerman disebut Gewebe kultur atau tissue culture (Inggris) atau weefsel kweek atau weefsel cultuur (Belanda).

Kultur jaringan atau budidaya in vitro adalah suatu metode untuk mengisolasi bagian dari tanaman seperti protoplasma, sel, jaringan atau organ yang serba steril, ditumbuhkan pada media buatan yang steril, dalam botol kultur yang steril dan dalam kondisi yang aseptik, sehingga bagian-bagian tersebut dapat memperbayak diri dan beregenerasi menjadi tanaman yang lengkap.

Dasar teori yang digunakan adalah teori totipotensi yang ditulis oleh SCHLEIDEN dan SCHWANN (Suryowinoto dan Suryowinoto, 1977) yang menyatakan bahwa teori totipotensi adalah bagian tanaman yang hidup mempunyai totipotensi, kalau dibudidayakan di dalam media yang sesuai, akan dapat tumbuh dan berkembang menjadi tanaman yang sempurna, artinya dapat bereproduksi, berkembang biak secara normal melalui biji atau spora.

Teknik kultur jaringan menuntut syarat-syarat tertentu yang harus dipenuhi dalam pelaksanaannya. Syarat pokok pelaksanaan kultur jaringan adalah laboratorium dengan segala fasilitasnya. Laboratorium harus menyediakan alat-alat kerja, sarana pendukung terciptanya kondisi aseptik terkendali dan fasilitas dasar seperti, air listrik dan bahar bakar.

Pelaksanaan kultur jaringan memerlukan juga perangkat lunak yang memenuhi syarat. Dalam melakukan pelaksanaan kultur jaringan, pelaksana harus mempunyai latar belakang ilmu-ilmu dasar tertentu yaitu botani, fisiologi tumbuhan ZPT, kimia dan fisika yang memadai. Pelaksana akan berkecimpung dalam pekerjaan yang berhubungan erat dengan ilmu-ilmu dasar tersebut. Pelaksana akan banyak berhubungan dengan berbagai macam bahan kimia, proses fisiologi tanaman (biokimia dan fisika) dan berbagai macam pekerjaan analitik. Kadang-kadang latar belakang pengetahuan tentang mikrobiologi, sitologi dan histologi. Pelaksana juga dituntut dalam hal ketrampilan kerja, ketekunan dan kesabaran yang tinggi serta harus bekerja intensif.

Pekerjaan kultur jaringan meliputi: persiapan media, isolasi bahan tanam (eksplan), sterilisasi eksplan, inokulasi eksplan, aklimatisasi dan usaha pemindahan tanaman hasil kultur jaringan ke lapang. Pelaksana harus bekerja dengan teliti dan serius, karena setiap tahapan pekerjaan tersebut memerlukan penanganan tersendiri dengan dasar pengetahuan tersendiri.

Diposkan oleh Borneo_culture di 05:05 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif

Label: Kultur

Senin, 2008 Desember 08

MANFAAT KULTUR JARINGAN

MANFAAT KULTUR JARINGAN

Perbanyakan bibit dengan teknik kultur jaringan, kultur organ, dan embiogenesis somatik dapat pula diterapkan pada jaringan hewan dan manusia. Tidak seperti pada tumbuhan, kultur pada hewan dan manusia tidak dapat dikembangkan menjadi individu baru.

¨ Pengadaan bibit tidak tergantung musim

¨ Bibit dapat diproduksi dalam jumlah banyak dengan waktu yang relatif lebih

cepat (dari satu mata tunas yang sudah respon dalam 1 tahun dapat

dihasilkan minimal 10.000 planlet/bibit)

¨ Bibit yang dihasilkan seragam

¨ Bibit yang dihasilkan bebas penyakit (menggunakan organ tertentu)

¨ Biaya pengangkutan bibit relatif lebih murah dan mudah

¨ Dalam proses pembibitan bebas dari gangguan hama, penyakit, dan deraan

lingkunganlainnya